
168'561

AUTHOR.
TITLE
INSTITUTION

PONS AGENCY

REPORT NO
PUB DATE
coNTRACr
NOTE

EDES PI I CE
DEscRI ORS

IDENTIFIERS

ABSTRACT

(RIP). a "ha
the BASIC la_
..machine-AndeP
implementation of. OXP on other .00mputing systems,Eight instructional
modules'.whicli Make,Up the EilV system are described in detail,
including curriculum -data structures and. the InfOrmafion saved in
Student histories,- These modules are called (1) ON0FP, (2) 04P, (3)
FARO. ,(4) URDOK, -(6). TEAclifle vERFY, and (8). 4s41Cs.
14'st of techniques and skills within-the technigOes is appended.
(AutbOr/CMV)

Bageforde, Mary
BASIC 'instructional
Stanford Univ., tali
in Social Science.
Navy Personnel Reset

NPRBC-TN78-12
MaY 78
N-00123-764C-1543
39P.: For related do

MOB

rogram:
. Inst.

.chand Development center

ID 007 096

System DcpUmen atio__ -

for Mathematical. -StuALes

ume nts, see IR 007 092-U_

_mF01/Pc02 Plus Postage.
*computer eased lahorat ies; *Computer Science
Education; ;; 'Aighex Education; Input Output;-
*InStructional Programs; *Learning Modules;
Programing; *Programing languages; Tutorial
Programs
*MAINsAIL

This report dOcuments th6 BASIC Instructional Program
s -on 141)cratoryl, thatteaches eldidn-Eary programming in
age, as implemented in tile MAINSAIL language, a
ent revision of 5A11 which should facilitate

* * * * * * * *# ********* *******4** * *
roductions supplied by ERRS are the best that can be made

from the oriqinal documen
********** **************************** V*

*** i*******4***

Ted 78-12

V s OIPARTMENTOFIICALTti.
folicATIONI WELFARE
NhTioNAL I EliTiTUTEfarm

T HIS 00C OMEN I. tin5 VEEN REP _

DOC. ED CXAC AS NE CEIvED v-VOM
THE PE ElSoN oR ORGANIZATION ORIGIN-
A TING pr 6meOFv nrvNioNS
syArE000 NoT NrCESSARILY PEPRE-
SEN T OF FICIAL NAT tONAL.-Nsit Tu TE OF
E (DUCA TION POS1 TioN m PoLiCy

BASIC INsrRucri

May 1976

SYSTEM PO'CUMENTATION

ary Dageferde

u e for \at&emattca1 Stgdies in the Social Sciences
Stanford University

Stanford, California 9430

.-leViewed by
hn D. Nrd, Jr.

Navy.fe net Research and Development C n

San Diego, California 92152

2

De

FOREWORD

This research and development as conducted in, response,to Navy
in Coordinating. Paper, Education and Training Development (NDCP-

0 under subproject MOS-PU.32, Advanced CoMputer-Based Systems
structional Dialogues,.and the sponsorship of the Director, Naval

Education 'and Training (OP-99). The overall objective'of the subproject
is to develop'and evaluate advanced techniques of individualized instruction.

This is one in a series of six reports (tealing with the BASIC
(BeginnWsAll-P-urpese

"tutorial" programming
Instructional Pro-

gram -(BIP), which is a programming laboratory designed foror the
student who.has had no previous training In progratsming.

Previous reports in the program are concerned with conversion of RIP
into the .MAINSAIL programminglanguage (Note 1, 1978), the BIP supervisor
level manual (Note 2, 1978)4 BIP 'student manuals (Notes 3 and 4, 1978), and
curridulum blrormatien networks for computer-assisted instruction (Beard,
Barr, Gould Wescourt, 1978), This report is intended for use by individuals
involved with the system-level support. of the BIP aystem.

The r

University.
Dr. D. Pollan.

was performed under ContraCt NO0123- 6-C-159 to StAnf
were Br. John D. Fletche=T andThe contract monit

. J. J. CLAkKIN
Cemmaoding OUicer

iii

The BASIC Instructional Program (B "handb-on 1 ry" that
ches elementary programming in the BASIC language. This report docu-

me ts the BIP system as implementea in MAINSAIL. MAINSAIL ts machine=
ependent revision of SAIL which should facilitate implementation of

B-P:on other computing systems. Each of the modules which make up t
em is described in detail.

SECTION 1. INTRODUCTION

SECTIONH2. ONOFF MODULE

.

CONTENTS

2.1 Ch- kibg that Student in Enrolled in Course
2.2. Setting up' the Curriculum Data Structure.
2.3 Reading From and Writing to the` History File

Page

.SECTION 3. EIP MODULE,.. , ,

.3.1 Execlin Procedure . , = =,-- '..

_3.2 : Dealing with Student Files .- . . . , y
3..3 EXecuting Prograns '10
3.4 The 'Help System and the NSGS 'File . . . 10
3.5 Protocol Saving II

SECTION 1 PARSE NODULE . ig 13

4.1 Recursive' Control . 13
4.2 Types and Tokens . . . 14
4.3 Poliqh-Notation .

iiPro

= , . . 16
4.4 Format of the'Coole need' 17

7'4.'5 Arrays Affected-by he Parser 18

,SECTION 5. XERS MODULE 19

SECTION 6. ERRDOK MODULE. 21

SECTION 7. TEACHR MODUL1E . . . 23

-SECT ION 8. VEREY MODULE = = . . 27

SECTION 9. MSSECS 40DULE

REFERENCES
...,.

REFERENCE NOTES . 9 , ..'.

APPENDIX. LIST` OR .TECHNIQUES AND SKILLS IN TECHNIQUES

*A,

vii

9

31

31

A-0

. LIST OF FIGURES

Data structures for of skills in techniques

2. A simplified portioi

7ting the next teak

curriculuth network

. 0 0 o 0

Page

4

24'

,25

SECTION 1. INTRODUCTION

The BASIC Instructional Program (RIP)- is an interactive_problemsolving
laboratory than teaches elementary programmfng in the BASIC language. It
was developed on the IMSSS PDP-10 research computer facilityin a-speeialized
high-level language called SAIL (Reiser, 197E),, which is preSently'avail-
cable only on pm-lo computers. During the year starting in October 1976,
Bly.was rewritten (Dageforde,,Note 1) in the programming language called
MAINSAIL (MAchine-INdependent SAIL) (4ilcox,-1977a) being developed at
the Stanford University Medical Experimental (SUMEX) Computer Facility.
MAINSAIL, as reflected in its name, provides capabilities similar to those
in SAIL independently of the underlying computer' system (Wilcox, 19770.
It istdesigned.to be powerful and efficient, with a high degree of por-
tability on a, broad class of computers. Thus; BIP was rewritten. in MAINSAIL

that implementation on other (notably smaller) systems would be possible.

BIP was en in eight separately-compiled models (ONOFF, BO, PARSE,
XERS, ERRDOK, TEAM, VERFY, and MSRECS) that are brought-into memory (by
the MAINSAIL runtime system) during execution as needed. The following
,sections describe the workings of all-those modules as well as the cur-.
ricuium data structures and the information saved, ift student histories.

1

aian

SECTION 2. ONOFF MODULE"-

OFF nodule performs three major tasks at student

Checks that the student is enrolled in the course.
Sets up the curriculum data structure.,
Rends from' and writes to the stuident'a history file.

2.1 that Student Enrolled in Cou

a

WHO
oi if
tells
off.

gri on or

ext file WHO contains each BI student's number and name. When
signs on.lby typing his number and first name, BIP searches, the
or.a lint with that information. If no such number is found,
name yped'does not match, the name.in the appropriate line, BIP
student that 'the number and/or name are incorrect, and logs him

2.2 S U he Curriculum Data Structure

The rriculUmt,foT BIP is contained: in a text file called TASKS. Be-
fore any udents.run HIP, the TODATA program is run to compress certain
:essential\information from TASKS andvrte it onto a data file called INIT.
When a s dbnt signs on, the INIT data is used-to initialize the curriculum
data stn ture. Throughont,a student's-session, BIP reads from the TASKS
file to ac, ens the text of the current task, its hints and model, etc.
The poidte s that were initialized from the INIT data give BIF efficient,
access to 'he text in the TASKS file. -.There are two-data structures that
need Co We initialized; one for-the techniques, and one for the tasks.

The po
grainming to
for a descr
the start of

technique.
witht%those
eadh t_chni4
0 shown in
the second,

nter array technique has an element for each of the 16 pro-
-

hniques in the curriculum (see Barr, Beard, & Atkinson,(1976
tin of the curriculum structure). Each ,element points to
a linked list of the numbers of the skills found in that

the appendix for a list of the techniques and the skills
hniques.) This information about the sets of skills in

used by.the task-selection algorithm (see Section 7).
e 1, the first technique includes skills 1, 2, 5, and 8v

3, 4, 6, 7, 9, 10, 11, and 12,.etc-.

techhique
1ar ray.
A

Linked lists of Aill6 in'eadh technique

r

1

5 I1 I
I

2

L -I t.2 w?d L=

r- --1 T77 1
1_ _ 3 I

I 4 I

L -I L_ _

T 1 r
16 1

1_ A
1

172 NULLPOINTER
I

1 8 I NULLPOINTER
L

:12 I-:NULLPOINTER I

Figure 1. Data structures for lists of ills i techniqu'es.

Tie data structure for
for each task. Each re K1

1. "link,' a poin

2. "name,' the name the

3. "taskIndex,

tasks, is a linked records, one
13 fields:

4. "taskPds,.
description.

S. "modelPos, the
solution.

next main task in tl linked -118

:ask.

mber.

ition (in TA'- of the task

position- (in the TASKS le of-.the model

6. "firstHintPos, the ate
hint. If there are knot e.ny la t

7. "nextHintPos,"
of the first hint (if 411.

During a RIP session, alter t
Set ,to` the start position o
otherwise.

position (in the TASKS 1 of the f
t is set to zero.

Y, the start position (in the TASKS file)
here are no hints, it is set to zero.
student has seen a hint, nextHintPos is
next hint, if it exists, and to zero

"moreTask," a pointer to the start of a linked list of the "moreTasks,"
or extensions, of this task 0; none exist, it is set NULLPOINTER). Each
moreTask record 14,exactly main task -: cord, except that the "link"
field is not used, and the 'met' "Nisk" field points to the next record in the
linked list of moreTasks of the current main task.

9. "re4Ops, which tan
quired in the student's

10. "disOps," which ha
that the student may not use

11. "reOns,",which has
and/or spg) required in the s u

12. "distns," which has a
student may not use in t4e so

13. "skills,' a points
used in the solution to thiu

bit turned on for each BASIC operator re-
o this task (see below)

b turned on for each BASIC operator
solution to this task (see below).

b turned on for each function (INT, RND,
den solution to this task (see below).

bit turned on for each function that the
ion to this task (see below).

Esch."reqOps" and "dta0ps"
BASIC operator that can be requit

15 14 13 12 11

INPUT
LET GOTO REM

inked list of the programming skills

eld consists of 16 bits, one for each
d or disabled in a student's program:

8 7 6 5 4 3 2 1

FpR GOSUB
STO NEXT RETURN

Vss

0

REOPEN ENSUB
DATA BEGINSUB

Thus-,

task, the
1 indicate

Each
that could

COTO, and STO P were quired in the solution to a particular
NOps bits for that task would be 1010001000000000, where a)
that the bit Is turned on and a 0 that it is turned off. \

eena"and "dialrne" field uses 3 bits, one for each function
required or disabled in a student's program:

Thus,
bits f

0

INT RND SQ11

disabled in the solution to a particular task, the disFns
task would be 100.

2.3. ils01ja, From and Writing s n l+ile

Each individual student 'has a.personal history file, a data file u ed
to store information about the student's current state (what task he is
currently wOking On, how many tasks completed so far, atc.),'and past per-
formance 01 tasks and skills. At sign-on4 thifi file's information is 'read
into v4iables anclarrays whose'elements are modified during the far. session.
At sign -off, and et numerous other points during the session the updated
informationls written back out to the history file. .

The history files contain the following information:

1. Th istor Sum

eget
vailables

studentNum
lastDate'Signorr
lastTimeSignon
tat' imeOn

tatNomSessions
numTsksDone
isistInqUsed
nuencToStayIn

ch r nIndex

um
Sm

wriable

tnq' ord

inforMation

, student number-
date of last session
time of last session
total time on (minutes)
total number of sessions
total number of tasks completed
highest technique used in last task selection

- if no technique to "stay" in
n if task-selection algorithm should-stay at

technique n, since student had trouble with
last task at that level

index into chron array (see below)
number'of last main task seen
number of last task seen (either the same as
mainNum or-the number of a moreTask of the last
main task seen)

information

L6 bits, one for each technique (bit 0 for
tnq.1, J. for tnq 2, for tnq 16). A
bit is off if corresponding technique has never
been-seen, on if it has.

6

2.

(BITS is

t

BITS

4-8
9

10

11-

12

13-15

:2nd

.= BITS

3_7

-8-15 .

k History- -BITS Array tsianf. Two bits-elements per task..
data type. for representing a'shert 'equence of.bits.)

neve r .see task again

ever passed ,verifier
pOSku-4 on first try?
ever said he understood tas

of failures in verifier
cite to leave after failur
Weeewith-verifier?

be modbl
11 the hints.

-f hint requests

changed in routine

upVer, enufo, verOption
upVer'(dalled by moreo)

posgeskint
moreo
ver0Otion '<called by ,verfY>
verOption
modelo
hinto
hinto:

finask
addTliite

ealled-,by ore
-teach°, moreo,

skit

BITS

0 -5

6-10
1115

BITS'',

0-5
6-10
11-15

3rd

BITS

0-7

'8-15

, ..-

S4U4L111±1--BITSTarray SklInf. Three bits-fele- ents

seen

task passed 'verifier_-
passed verifier-In n row

cbonged in routine

LyoYef mo
UpVer downVer

in_post-task
"4" in a row

on skill

postTaskint
postTasklnt

acktTiMe.

1st
BITS

4 - The Chron o1 ical --IiITS array Chrou . Two bits
titer the uctst completed the tasks.

9

10
11
12
13-25

2nd
BITS

confOnt s c hanged vou tine

ori ie- task. was Sp ii ica 1l} teach°
revu stad by ert

ev er pass o.t1 ver dlier upVcr
pa ased ort --fist try, upVer
On if !'-nnd. ertood" task postrask 3:11t
adanter of faillUres in velff ter store°
chose to 1_ cave after fat aur e veraptioo
disagreed wie.--h ver fier :veropctor,
sasv ate ma del- model°
sac,/ all tin e Itints n into
nut-6'er of hi-rt Z--Qr_ites Vs h in to

0-7 task ident if i_ca
8-1 orat=es ors task

'nib Cr
add Tirne

S. , The mid Time Eac lr ash s 5t rted - -int gor array ct tin e
Thee are two e gm _nt s per _a_ k, the f irp t tel 1116 the da to , and [irie se corgi Li,
the time of the start of the tss r eff erexeed by the c Orr es [-Deriding ele_rnents
of the chr on art- ay -

6. 'ale Stun ietms . i reed 2...1, e 648---Ncring ar ray 5L el plc . The At:. (It
character codes', of the c barac t erg .0 the tulentas sioed f ilie names arc
saved at the end of the etucleti t h -is Lary, --41.ch the d if f ere aineS oepar 4 tea
by 32, the character cod e For 4 4 PaCe. ,-

The DIP nodule contains the traain
scans each line typed by the 5t-ud e-rnt
a BASIC statement, a request foi.:raelp,
an appropriate procedure to eitlier th c omrmanO, to parse the.state-
meat, Or to print a help or art-qr me sate.

tP :VD UI-2

pr ogr am prcce duce, execlin, which
-whathr it is a BIP command,

an e.r tor.. Ex.ectin then cal Is-_,_---

pr
to

The OIP file `s other Inala lro cec cas hatidi,e tur en t files, execute
grams, print help messages when taquelst ed by tile fatteglerTt, and save pro-
_ ls of the DIP session (when desired by the --Upeto..iis,o-r).

3.l L iecl PrOcedlirL

When a Istudent ,signs on, the 131 pc_)g -art arms Borne initializa-
tion and pre-para4ion for the session. -Slhea.r .11:eReatzadJy cal is the main
procedure eNeclin to handle each i..71pu t 1u e, caj-li-4g appropriate procedureb-
deFencling on whether the line is a BF IC staement , Ea 137p command, an
error, a request for help. ,

If are first character of the line is ," ther help procedure
(described below) is called.

If the first character is a rtt-Imb er, e ii eAp-cto the line, to be a
BASIC statement. It scans over the L inea ntamDer anIcle;;xpects the next se-
quenee of nonblank, characters co'ba a BA-SIC,' okeVafor (LET, INPUT, PRINT,etc.) . If it is a BASIC operator, then tho p-ra-ced_Air& a ntax is called to
parse the statement. If it is not, e:xecAin allec:Ic to see :If the line is

user-function definition or a LET s-tatemnt_wi.tIvuut eapl :lett use of the
word "LET," and if so, calls n Ot-b wise, t is lirrc Tans an error:
-etcher It is missing a valid PA_IC st twit r, or c ont aitis a BIP command
following a line number.

If the input line does riot st art wi tiA -be
,

.exe_ci in expects it to
be a B1P command.. if it is, the app pr lirre: proceclar.e t 0. carry out chat
command is called. Otherwise, tile line hag; aM -etrar: ettrwr it is
illegal command or it has a BASIc, opermt or wh ich ii.9 mu=ss ino a line number

o

if any of the above-ment pota 1ble extois czar s, excel in calls
the procedure ms 1.7(t to get the Elppropri,ate_!: ea:`rt, t trneg t5illg cs, prints that
Message, tells the student that the irlpict 1- 40. 1,7--4-0 wain ccePted, and in-
dicates that he may type "7" for help_

3.2 DeAlin witll Student p it es

Students are allowed to save uT tlo JO of thaar- pvoga'atna for later
At any point, they can save the curlen4 program tAnd-er n none t hat they
assign. Later they can retrieve thAt program wiCh thcs! -GET- command, ordelete it command, At: any Te:::lat: 2 t he command will
list the namee, of the files curreatay storecl.

The name students think their 9
is actually red under are

9

11 -in sawed u d alid the Larne
tit -.7:1-11 a 1,2 necessary to

assign the programs unique names so that they are nt t confused with obit

programs saved under the same names by other students. Also, in order

for a file name to he truely machineindependent, it shoull consist of
no more than fisix characters. Therefore, the format of the name under
which the program is actually stored is.

S'student numb ->F(file number

where -file number is a'. number between 0 4nd

During a BIP session, the student file adult:6 are in the sLriug ari.ay
stuFile. If the student's number were, say, 8:!1, then stuFile[0] would be__---_
the student-OssIgned name for the file S88E0, stuFile[1] would he the name

. for S8 Fl, etc. Between sessions., the student File names are stored at the
end of tho student histoty.

Wben a student asks to save a program, the proc edur e ,syee searches
the stoFile array for the next null element, assigns it the name the student
gave his program, creates a nevi file whose name is in the format described
above, and copies the student program to that file.

To retrieve a file, iL(searches stuPile for the appropriate student
file name (arid tells the student if that name does not exist), opens the
corresponding file, and copies the saved program into the studnt's working
space.
4._

To delete a rile Rill° searches sturile for the appropriate student
file name, deletes the corresponding file, and then sots hat element of
stuFile to null, so that it can he subsequently used when be student
wants to 6aVO another program.

to it
stuffie ar

the 6aved ,.tudent tile6 tiluso simply steps thr,u6h tine
kind types out tt-1 nonnnil elements.

flAe procedure ruin) 16 called tu gall_,

dektor (the Main wrecedere in the ERRPOK mo illesee Section () to check
the program for structural errors. If none exist, it commences interpre
tat ion of the program. For each statement, rUno sends xqute, the main
XERS procedure, the BASIC operator used in the statement, and then .xcute
calls theapproprtate procedure to interpret it. Rune keeps track of the
number of stateirmlits that have been accented and warns the student when it
is eXco8sive, since the program may be in an inf inite loop. At that point
tha student hay the option of either stopping execution or continuing and
tolling rune, the maximum number,of further statanonts to execute.

3 i[e1p Sirs torn the MSC

'At any point the student may typo a " 7" for help. The proc:eciure
Ilqx is called to decide what,: type of help the student a. eds, If the

1 5
10

is typed immediately fol
lislE will give the student_ further informati
made and tell him totype " ' for more help
there are up to four different help messages
If the student types "?REF," Fib refers him
Manual.

a syntax, structural, error,
n shout the type of error
as'iong as it is available--
vailable for each error).

a section of the Student

f thestudent types ' " et any other time (i.e., not after making an
help willsimply state that BIP is expect ng either a BIP command

a BASIC statement and that he can type "?BAST see a list-of the
statements grid commands.

How does lat12 know which help message to give at -ay point after an
has been made? First of all, it knows which type of err ©r was made,

since exactly one of the variables zafri, cipkfil0 or -rfis-(for a syntax,
structural, r,r exeution error, -respectively) will be nonzero and will
tell th6 error number. Help keeps track of how many '. have been typed
directly afCer, an error so that it knows which message (to the sequence of

fferent help messages for the error) to print out.

The help, message_ are all in the Eile MSGS, along with t ne error
ages, the manual refe.rence messages, and the skill descri, tions. Each,

group of messages is On a 'iseparate page of MSGS, in order. rte beginning
of each page has pointers to the start of all the messages on *at page.
Given a page number and a message number, the procedure ms Txt will,re-
trieve the appropriate message from the file MSGS. Help knows the page
number for each type (sYneactic, structural, or execution) of error made,
and the error number from pmelrf, 4211a, or xerfl So it simply computes
which message number should be presented (based on the number of times,
the student has typed "7") and calls ELAL1'xt v.itl).-Lhat number and the appro-
priate page number to get that message.

1E(212,LL11LLE

The Supervisor at leael hit' impLemeot i v,haLhck
or not to compile the Lode for protoccI saving. Thia is done by setting
the macro "caftSaveProfoeol' (in the file MACROS) to TRUE or FALSE just
before compiling the BIP modules. tf it is TRUE, then the Supervisor
may save "protocols0°' or records of all t-hat happens during student
Sessions, for setae or all BIP students. Whether or not they will in
be saved for individual students is determined during the creation of
student histories, by an option in the neuHst program_

protocol-saving code scattered throughout chi, UL}' modules.
The gal file contains two procedures that are'often called by that (20(i,
to write various information to the protocol file. One, writeTasks01wriLet,
the name and number of the task the student is currently working on. The
other, ,IFLjtaaL, writes the current student program.

If the protocol-saving code was compiler] and the Supervisor said he
Wanted protocols saved for o spocific student, then a protocol of each
of that student's RIP sessions will be saved on his personal protocol
filet whose name is of the format DAT- udont numbe

I (11

SE &I 4. PARSE MODULE

The purpose of the procedures in the PARSE module ''!to examine each
of BASIC code that the student types and to produce-a Line of inter-

hat can be read by the peocedures. in the KERS modu\le.nai cod

4.1- Rect tv e Control

The parser uses a very common method, called top -down parsing with re-
otrsive descorlt to scan the input line and to produce an argument line for
KER\S (the interpreter). The best viay to explain this method is with an
example. Suppose the statement too parsed is a LET statement, which
has the Follotaing syntax:

<Variable, ? <expression ,'.

In this se, the parser first looks for a legal BASICveriabIe. It It
finds on it WcaMines the input string, expecting an "°." IC It dues
not find t, an error has obviously occurred. Otherwis the parser goes
ahead and looks for an expression.

Thus, the
var bl

SYTI

Cho leg
correct s

__t action of the parser is to call the procedure
e. the same way that,lets (the procedure lied by

e parser control procedure, to parse a L5T St ent) "kno
syntax ,4f a LET statement, variables "knows what the
TIE-a-X. et a\variIM -- is:,'.

ring variable' o nam'eric variable='.

log va. 4slotc> = (string id-. ar ,&-tring

<numefic variable
or =numeric id= (

rie Id or iiutueric id?

urith.exp,-.)

Hence, the first part _ the line to see whether the variahl
is stti In either caae, the parser then looks fur a "(,"
because the variable might be an array element. if no "(" is found, con-
trol rc urns to lets, because the parser assumes the variable has been
found. If to "c" is found, however, oar iabloPar passes control to aExp
the arithMetic expression parser. Upon return troni aExp (in the case of
a string vat-IA:710, variatiWarse looks for the closing parenthesis. If
one is found, control is passed back Co lets. If not, then a syntax error
has occurredeither a parenthesis oismatch or an illegal aritilmetic ex-
pression /

.

The pr
trol to
arithme

continues in this manner. AExp immediately passes con-
Mich passes control to aFactor, because of the syntax of
qsions:

th.exp <arith.te

h. factor-' or 4arit4jactor. -arith.

1 Caetor <arith.priM or arithprUttarr. (aritl primary

finally in aPrimar the parser looks ''or an ari thmetic primary such as

a nu constant, a numeric variable, or a user-defined function. if
it finds a legal rimary, it returns control hack to aFactor. Otherwise,

a syntax error mu have occurred.

EVentually, control will be passed back up the line to lets (unless
a syntax'error .occurs),,which will then look for the "&i symbol, call the
expression parser, and return back to syntax. For e)iample, the statement

C4 .+ 2) INT (Y) woUld be parsed as follows:

<LET statement)
<v_

<nun var> (aExp)

Z Term 4- aTerm)

2 (aFactor -4- Factor)
2 Ptimary 4- aPrimary_)
2 X 4- 2)

2. t 2)

X 1- 2)

X 1- 2)

X 1- 2)

<express ri,-

aExp
aTerm
aFactor
erimary

INT (aExp)

INT (aTerm)
INT' (aFactor)

INT t 'aPrimary)

Thi iu ates.exactly which procedures would be cralleld =ire the

parsing of tement. Each procedure _calls the one benea h it in
the hierarchy and retur-ns control back to the procedure which called it
if it finds what it expects. (Thus, the name "recursive descent" for this
parse method, because the parser descends through levels of procedures
until it finds a match for the part of the statement it is looking at.)

4 . 2 Types and Tokens

However, the parser must know exk ly how much of be line is to be

examined at any given time. To do this, it uses a procedure called :getTekc.,
which takes the next syntactically meaningful part of the input string and
puts it in the variable token. At the same time, it "types" this token--
that is, it assigns to it a number that indicates what ,its rrreuning is.

These types are defined as macros in the file MACROS Ze.g., lEllsaa is &-
fined as 17) so that they can be used in CASE statements. The use of mne-
monic macro names instead of integers makes the code more readable. Tho

macro names for the types are listed errs the following page.

nich) numeric variable
sid string variable
strcon string constant
numcoo numeric constant
opee -1--*/&()
function a -userdefined function
egal

noteq
less
leseq
greq
greater
nott
andd
ocr
root

Lateqv
rndnum
Lengt

bad

narray
dnarray
narray

For exagple,

an or
)

.boolean not

bqolean and
boolean or
square root

iT4Ucated_ integer
random number

-th of a string
egal character

one-dimension n er c array
two-dimeas-Lonal numeric array
string array

the input line were Z (X 2) INT (Y), the procedure
etToken would pass the line to the other procedures of the parser as follows:

nid Z, oper (, nid X, oper -1-,'numc-_ 2 oper), egal
inceqv INT, oper (nid Y, oper).

(Later, during the variable-parsing routine, the variable Z is recognized
as an array variable, so its type would be changed to narray for the inter-prefer,)

Hence, each time Ereten is ca red, it gets a new "meaningful syntac-A
vtte into the variables ken and type. GetToken first gets the next

tie)ontity" from the input string, types this "entity," and places the
ai

nonblank,cbaracter on the string. Then, depending on what the character is,
,ger.Tpken_ assigns it a "preliminary type" obtained directly from the array
typetable (initialized in the module Pcam, which is listed in the file
PARSE), which has an entry for gvery ASCII character (e.g., typetable[+)oper, tipotAblepfl nid, typ_etabjeill bad).

GetToken then uses this preliminary type to decide what to do next.
example, it the character is a letter, it scans the input line until

a nonalphannineric character is encountered, andepasses the resulting
string to another procedure auipi, which determines if the correct typeis a numeric variable, string variable, user function, etc. If a " is
encountered, then .6f.112La scans the line for another and assumes that
whatever lies between the two is a string constant. I the character isa /, k, or -. nothing is done.

15

The parser then uses the information pa. pied to it by tficAtih to decide
what to do next. For example, in the procedure aPrimaL, if the current,
type 1s int6'qv, the parser assumes (perhaps erroneously) that a value for
the INT function is forthcoming. Ilenc, it calls EptToken to be "(" after
the call, Then it calls get Totcen again, and then aExp, because it assume
the argument for the iNT call-will be an arithmetic ev("-f!,ssion. Upon return
from aExp, it expects that taken will be ") "if ax error has
occurred.

F
The main problem with this type of parsing algorithm occurs when it

is not fma'edlately obvious what to do next even knowing what the current
token is. In BIF's parser, this situation occurs while trying to parse
general expressions (in PRINT, statements) and Boolean expressions. For
example, suppose we are attempting to parse an expression in a PRINT
statement, and the current token is X. Although this eliminates a string
expression from consideration, the parser does not know yet whether the
expression is arithmetic or Booleani the _statement= could_ be PRINT X Or_
PRINT XY. NotmAlly pars-vs try to solve this problem with a method called
backup, pe=haps trying to parse an arithmetic expression first. If this fails,
the input string can be restored to its original state, and a Boolean parse
tried.

paeser uses methods th ry to determine the type of the expression
without parsing it. For example, to determine whether the expression is
Boolean, the line is scanned, breaking on "" or " >" or "<"--which must be
present lo a Boolean expression.- If one is found, the expression is.assumed
to be Boolean; otherwise, it must be arithmetic or string. In either case,
the line is restored to its state before the scan, and the parse proceeds
correctly.

The same type of problem can occur while parsing a Boolean expression,
where the parser expects to find a string or arithmetic expression followed
by a Boolean symbol and then another arithmetic or string expression. If

the token is a "(" or a user defined function, the parser has no way of
telling at that point whether the expression is string or arithmetic. Again,
the input string is scanned for the type of expression it contains.

4:3 Pcaish Notation

In the proc °ess of parsing the line, the a transt ms itltroni inlix

(normal parenthesizing) to polish notation, In which operators follow their
arguments.. For example, the expression

be come s.

INT OAR (X * (2 V)))

N 2 Y + * Stilt INT

in the polish notation. Also standard delimiters are used to signal thd
beginning of an array subscript and the end of an expression. For example,

16

A (3, 2) becomes A (3, 2 Y

P

](used to denote beginning of an array or substring]
[, used to separate subscripts or string characters]
[) used to denote the end of an array or subst'ring]

For the separation of expressions in a PRINT statement, the lAonprinting
character whose character code is 30 is usetl. Forithe separation of vari
ables in an INPUT, DIM, or REAP, and the separation of data, a is used.
As an example,

INPUT A, A$, B$ becomes A A H$ (J).

The way the parser transforms the liqe from infix to polish notation
is rather straightforward. In the "INT (SQR (X * (2 + Y)))" example above,
while parsing the INT," instead of generating the code for the "INT" he
fore atai is called, the parser waits until after the return from aExp.
Hence, the code for everything else has already been produced and the °INT"
is tacked on the end. The same thing is done whenever any operator is en-
countered.

Thus,the code for "SQR" is tacked onto the end o X Y . In the
case of a binary operator (one that has two arguments, such as or *),
basically the same thing is done. The code for the X is produced in aPrimaty,
and ChRn control passes back to aTerm. Instead of making the code for .the
at this stage, aTerm calls aPrimary a second time, which then calls

to parse the parenthesize expression. AExp calls aPtjxuar-- which adds 'the
code for the 2, but when Control returns to 4.ELcL, it does 'not generate the
code for the but waits until after the second call to !ELI.EtALy (which.
adds the code for the Y). Hence, at this point the code is "X 2 Y +."
Finally, control passes back to aPrimary, which finds the end of the par-
eathesized expression, and then to aTerm, which finally generates the code
for the *. (What actually happens is probably less confusing than this
description.)

4.4 the Code Prrod

The code has a special format ac tamilated in the string variable
kode and then stored in an element of the a -L-n, array) so that it can be
easily scanned by XERS. An eletnerrt-of code has the format

<type<tokerv<delimiter>

and elements of code are strung together to form the complete eapressluil.
Each complete line of internal code, corresponding to a BASIC expression
typed by the student, it stored in an element of the araz array, which IN
interpreted a line at a time, by the procedures in the XERS module.

Nottprinting characters whose ASCII codes are 1 throu li 23 are used
for the, <typo> and the nonprintini; charaCter 29 is used for tho <delimi

17

in the above format specification. Using lower-case letters (a m 1, b = 2,
etc..) to indicate the (type> and the j character to indicate s=delimiter)
the internal code produced by the parser for the example discussed above
is:

2 a 'Y

4.5 Arra-s Aff -cted the Parser

SR INT j

Finally, the parser updates five arrays (prgtxr, linNatns# opers,
and order) each time a BASIC statement Is parsed. prgtxt holds the

exAct text that was typed; linNums, the input line numbers; 22er, the
BASIC operators; and arg, the'code (as produced by the parser) for the
11ne---Every time a new --(=syntactically -corm ect) line is typed by the student,
the next element of each of those four arrays is assigned (in-the procedure
RHLLIO appropriate values from the information in that line. The integer
axray order tells The numerical (by line number) order of the lines. The
value of the first element of order is the index into the other four arrays
of the line with the lowest line number; the value'of the second element is
the index of the line with the next higher number, etc.

For example, if the student input the following lines as a solution
to the simple task "SPOON"

order typed numerical order

10 READ X$ 10 READ X$
20 READ Y$ 20 READ Y$
100 DATA "SILVER" "SPOON" 30 PRINT X$ &-" " & 1$
30 PRINT X$ & " Y$ 100 DATA "SILVER", "SPOON"

999 END 999 END

then the values the and otdcL Lay vit=m.riLs are:

Index PrgTxt

I 10 READ X$
2 20 READ Y$
3 100 DATA "SILVER ,"SPOON"
4 30 PRINT X$ & " " & Y$
5 999 END

littNum8-------- opvt order_

10 READ 1

20 READ 2

100 DATA 4

30 PRINT 3

999 END 5

SECTION 5. XERS MODULE

The workings of the interpreter are relatively simple when compared
with the parser. Because the argument code generated by the parser (and
stored in the array ar,g0 is in polish notation, It is simple to use stack
to evaluate expressions. Again, an example i appropriate. Suppose we
wish to evaluate the polish expression

X 2 Y + INT.

The heart of XERS, the procedure evalToken is designed to perform certain
actions depending on what tiju the current token in the arm string is.
(To get another token off the args string,-the procedure nextx is called.
It scaneto_thaAgxt ',delimiter, puttinga new token and type in the
variables of the Same name.) In this example, evalloken would do the
following as each taken is scanned:

X Push the value of X onto the real stack.
2 Push 2 onto the real stack.

Push the value of Y onto' the real stack.
+ Pop the top two values off the real stack, add them,

and push the result onto the real stack.
Pop the top two values off the real stack, multiply

them and push the result.
the top value off the real stack, take its square

root, and push the result onto the stack.
INT Pop the top value off the real Stack, truncate it, and

push the result back onto the'real stack.

Hence,

INT (SQR (X i)))

has been evaldated.

Any expression is evaluated iu Luc Way. A 1.161,L
occurs if we wish to evaluate the value of an array variable. In this
case, We make use of a procedure called :a2yaL11, which calls the token
evaluator evalToken until a specified delimiter character is reached.
Fox example suppose we wish to evaluate the value of

2) & KS in polish form: AS (X 2 +) X

Upon gett Ing A$, since the Interpreter realizes it is au array variatAle,
it does not try to push its value onto the stack. Rather, it scans past
the "(ll symbol, and then calls g2141LII to call the token evaluator until A")" is reached. Hence, the following occurs:

X Push the value of X onto the real stack.
2 Push 2 onto the real stack.

Pop the top vilues off, add them, push the result.
Stop.

19

AL hh point, the value sitting on top
Interpreter pops its value of f the real stack, pushes
(X + 2) onto the string stack, ar10 then does the Poll_

Lhotack. o the
value of A$

X$ Push the value $ onto the string stack.
& Pop the top tart values off the string stack,

concatenate the m, n4 Kush the result back onto
the string stack.

Assignments are made iil ar manner. One Ant thing should .

be noted--the interpreter assumes -that the value we wish to assign to the
variable is the top element stack just before the assignment is to
be made.

Suppose, for example, that want to make the following assignment:

B (J) INT (which has the following polish tom:

B (J) Y INT = A

In this case, the interpreter
causes the evaluator to be
the value of B (J) INT (V)
the A, the evaluator will pop Ili

able A.

first instruction is 49Uuii_1=(' which
uI a "-" is reached. At this point,
e on top of the stack, Upon examining

stack, and store that value in the varl-

20

SECTION 6. ERRDOK MODULE

When student gives the RUN command-to BIB, the ERRDOK module checks
the studeait's program for a number of possible structural errors.

t

. ERR]JOK employs a op _s algorithm. if, at any point, an error is
encountette an appropriate error message is given and the program is not
executed,

ERRD O initially makes sure that there exists a program to be run in
the lira Place, and that the last line is an AND statement. If so, it
then cheeks the program line by line for further possible errors.

There are a few key variables and record lists employed by ERRDOK
the program.in its first pass through the lines of

I. is a BOOLEAN that is TRUE whenever a I3E.t jNstits has not yet
been followed by an ENDSUa.

2. Level tells the number of FOR statements that have not yet
been folio- by NEXTs-.

3. ftYrVar is a STRLNG array with the names of the FOR loop, index
variable

4. 4SOrsyns is the" record class for a linked List of records, one
for each function definedintbe program. _t has three fields: "name,
for the tUrWtion's dame; "index," telling the location of the function
definition In the program; and a link to the next record.

for each Sit

.Cor the BEGZN
BOOLEA0 "re
and a link to the next record.

s the record class for a linked list of reccada one
tine _rt the program. It has four fields: "subStart,"

line number; "subEnd," for the ENDSUB line number, a
need," set only when a (ASLIB references the subroutine

BURclass is the record class for a linked list
for each FO loop in the program. It has three fields:
the FOR lim0 number; "forEnd," for the NEXT line number;
next record.

If the
tion, ERRI)Oi

the "name"
being delis
message

teou,hlk ono
"forStart," for
and a link CO the

ne being checked in the first pass gives a function
the already existing userFns records (if any). If

of any of them is the same as the name of the function
then the function has been defined twice, and an error

Otherwise, a new userFns record is created.

An ENV Stalement that is not the last line of the program produces
an "Ilicgall located 'END'" error message.

If the line being chocked is a FOR st atement, the loe)Level number
is incremenrt'tL and the array element '--Var[1:o even is set to the FOR
loop's indot variable. A new FORclass record, with the "forStarc" field
set to the Cirrrent line, is created.

21

When a NEXT statement is encountered, 1292LeLel is checked. If it
Is zero, then the program has a "'NEXT' without a preceding 'roR'- error.
Othcrwise, forVorIloopl,evell is checked. if It is not the same as the
variable In the NENT statement:, Tin "Illegally nested FOR...NEXT loop"
error has been detok-tod, Otherwise, the forEnd" field of the ORclass
record for the loop lust ending_ is set to the NEXT statement' line num7
ber and Ac/apti2LI1 I decremented.

If the line being checked is a BEGINSUB statement ond the BOOLEAN
variable inSub IS TRVE, then an "Illegally imbedded subroutine" error has
been found--a subroutine has begun inside another subroutine. Otherwise,
inSub is set to TRUE, and the previous non-REM statement is checked.
If it is not a STOP, a GOTO, or an ENDSUB statement, then there is an
error: execution of the student's program could illegally fall through
into the subroutine, Otherwise a new SUBclass record, Kith the "subStart"
field set to the current line number and the "referenced" field initialized
to ELLSE, is created.

When an ENDSUB tatement is encountered, tf inSub is ,mot TRUE, then
the program has OO "ENDSDB' without a preceding 4BECINSURZ" error. Other-
wise, the "subEnd" : field of the SUBclass record for the subroutine- just
ending is set to t ENDSUR statement's line number, and inSub is set to
FALSE.

Other statements are ignored during the first pas,s.

If the first pass is complete and the variable inSub is TRUE, then
a "Missing EN1Dg110 after I.BECINS1.0" error has occurred. And if loopLevei
is not zero, then a "'FOR' statement without matching 'NEXT" error has
occurred.

Otherwise,
tements are c.

ery'thing is a l l right so far, and a l l GOSUB_ (and IF
eked in the second pass=

GOSUB statestatements are checked to make sure that they branch only
BEG NSUBs. And if the GOSUB is locaeed within the subroutine branched
to, an error has Occurred, since recursive subroutines are not al lowed.
(This error has occurred if the GOSUB's line number is between the
called subroutine's beginning and ending line numbers- -its SUBclass
record's "subStart"'and "suhEnd" values.) If all is well, the _e_ ilced"
field of the subroutine called by the COSUB is scat to TRUE.

T cinch Cis st

which they br-
other than a
a FOR loop or Into or

Once the so
SUBclass record is
since all subrm

Finally,
program In n119 .0

ttesnts arc' checked 'to make sure that the Line to
and is an executable statement (any statement
TM). Then an illegal_ branch into the middle of
of a subroutine is checked for.

i pass is complete, the "referenced" field t,f each
eked. If it is not TRUE, then an error has occurred,
must be referenced by at least one GOSUR.

rut- ttrrtl errors have been detected hy ERROOK,,,thte
run=

22

SECTION 7.- TEACUR MODULE

7 TEACH's main: procedures handle task selection., the post-task interview
updating of the student history, and stepping the students through their'
first Scallion.-

in Order to nderstand how --ask selection is done, necessary -to
understandthe'definition and use of skills and-techniques. .13iP'seur
tilculum goals.are the mastery, of certain programming techniques, including
elmple_outOuti using loops, conditional branches, and arrays; assignment
to variables, eta. The techniques .are linked in a linear'order, each having.
but one ,prerequisite". (the previous technique), based-on dependencarand in-
creasing prOgram complexity.

The techniques are .nterpreted as sets of skills, which are.vety Spe-
cific curriculum elements like "printing..a.liteTaTiliring". or "using-a '.

Counter Variable in a.loop." The skills. are not themselves hierarchiCally
,ordered. The appendix liat6 thetectiniqties and skills within them. The
programming. problems. or "tasks" are described in terms. of the skills they
use, and are selected. on the basis of.,thiS description, relative tb:the
-student's history- ofeompetence on each skill. Figure-2.shows-a_simplifi d
,portion of the curticuiUM-network, and dbMonstrates the relationship amon
the tasks, skills, and techniques.-

The algorithm by which RIF selects a next task.when theStudent
quests it is shown ipTigure 3. The selection process begins with the
lowest (least -Complex) technique. The procedure Lte_tEpaLlputsall the
skills in that tOhnlq4O into a "set" (actually, a linked list of skill
records),-called,MAY.;' which wiliAbecome'the set of skills that the next
task "may",.use.

etUpSets then examines the student's-history on each of the skills
associated with the technique, to see if it needS further work. Two, key
counters in the history (see documentation for ONOFF) are associated with
each skill., One is based on the results of the solutiolichecker, and
monitors the student's continuing success in using the skill. The other
is based on the student's self- evaluation, and Monitors his tun continuing
confidence in the skill. The, current definition of'w,"needs work" skill
-;;one on which either counter ks.zero. For. each successful use, of a

skill, both counters- are incremented. (in upVer). if the student quits-
a task requiring a particular skill, the first counter is decremented;
if the student requests more work op a skill (during the post -task
viet4,1 deacribed below), the second counter is zeroed. -,Any such "not yet
mastered" skills are put into the MUST. "set" (linked list of skill records).
Eventuhry.the program will seek,tofind a task that uses some of these
MUST-skilIS,

TECHNIQUES

SINGLE
VARIABLE
READ & INPUT

SKILLS

print
string
variable

Assigg
numeric
variable
with LET

Assign

variable
with INPUT

TASKS

Write'a program that
prints the string
"HORSE"

TASK HORSE

e a program ,that

uses INPUT to get a
-_ring froth the user

and Assign it to the
variable'W$. Print W

TASK STRINGIN

Write a program that
first assigns the value
6 to the variable N,
then prints the value

N.

TASK ASSIGN

Figure 2 A simplified'Oortionpf the curriculum network.-

24

Student requests
TASK

Start at lowest techniqu

Move to next
higher
technique

.-. yea

any
skills in
MUST

an
higher

echnique--
7

EXamine tasks: find those
with saes MUST skills, no
skills outside of MAY

any,

such task
found'

no Found HOLE in
curriculum., Send
message to file

yea

Present the task with
the.greatest number of
MUST skills

Figure 3. Selecting the next task.

'Student has
completed
curriculum

If no,MUST skills are found- (indiCating that' the-student had mastered
chnique level), the search process moves up by

one technique,: adding'all its skills to the MAY settheneseeking MUST,:
skills again.. Once -a MUST set is generated-,'the search terminates, and
411 of ,the tasks-are examined.by the procedure select.: Those considered
as a posailhia next task for the student -must require. (s). at least one "
of:the MUST skills, and (b) no skills.outaideof the AMY set.. Finally,
the task in thin grodpthat, reqpires the largest number Of MUST skills is
presented as the next task. Thus,'in,the simplified scheme shown in,
Figure;?, assuming that the-Student had not .yet- met the criterion on the
skills shown,the first task to be presented-would be- HORSE, becauSe its
skill,lieS in the earliest technique, and would constitute theifirst MUST
set. Task ASSIGN would be44esentednext, since itS skills come- from the
nextiligher Cechaigne; STRINGIN would.be presented last,' of these three'

all the skills'at.that

An interesting.curriculum development technique liaa evolved naturally
h3,s scheme. if.DIP has selected the MUST and MAY sets, but cannot

find, a task that meets the above requirements, then it has found a "hole"
in the curriculum. After writing a message' to the HOLES file (see Section
3.4 of DdgefOrde & Beard, Note 2) describing the nature of the missing task
(e.g., the MUST and MAY skills), the procedure adiust examines the next
/higher, techniquer- It generates new, expanded MUST and-MAY sets; and then
the procedure select again searches for -an appropriate tasks if none is
'found; a new search begins based on larger MUST and MAY sets. The Only
situatipn in which this process finally fails to select a task occurs when
the atudec,t covered all of,the curriculum.

The first task a new student gets is not selected in this manner;
it is automatically task GREENFLAG, which-requires a two-line program
solution. Because this is expected tb be tir2 student's first programming
experience, and perhaps his first-interaction of any kind with a computer,
he is led through the solution to the task in vary small 'steps.. GREENFLAG
is the only task in the earriculum that presents text4from the file GREENE),
asks questions, and expects therstudent to type "answers," all of which
allleviates the trauma of being told to write a program in the first session.
However, sinde the student's responses are frequently commands that are
passed to BIP:s interpreter, he can see the effects of the input, and emerge
from GREENFLAG having written and executed a genuine program.

./

.14ben 4 student has finished.GREENFLAG or anyother task by success-
fully running his program, he proceeds by requesting "MORE." The procedure
morco first looks through the student's program foethe BASIC operators
and functions (if any) required in the solution to the task. If any re-
quired element is missing, he is:asked to add it to the program and rerun
it before again requesting "MORE." If the program contains all the required
operators and functions, the procedure verlify is called to evaluate it by
comparing its output with that of the model solution :run on the same test
data (see Section 8), and the results are stored (in the student hiStory)
with each skill required by the task. Also, in ,the post' tasCinterview,
the student is asked to indicate whether or not he needs more work on the
skills required by the task, which are listed separately. Thus as mentioned
above, BIP has two measures of the student's progress in each skill: its
own comparison -test results, and the student's self-evaluation.

26

SECTION 8. vi gFY MODULE.

VERFY is, the solution - checker module -Basically, _ avalUates the
student's program by comparing its output to that of the model solution,
First, the peeeedUre verify calls vinit to initialize yariables, based on
thb coding, lrne that precedes the model'solution in the TASKS file. (See
Section 5.2 of Dageforde & Beard, Note 2, for adetailed description of
the coding line.)- If that coding line does not start with a semicolon,
khen the student's program, is not checked; it is assumed corr t. Other-
wise, the rest of the line is scanned for option code charac ers and value
lists, If there is an "0," the.yariable wantExact is set TRUE, since the
"e" signifies that the student's program must produce the act same number
of output-lines as that of the model, An "n" signified t numeric ex-
pressions are re be stored for comparison (otherwise they are ignored),
the variable wantNumCon is set to TRUE. An "r" signifies that there are-
random numbers used in the-programs, and the "random!' numbers to be plugged
in during the solution checker's invisible (to` the atudent) execution of
the model and of the student program are stored in the variable Savrnd.
An "s" signifies that string expressions are to be stored for comparison
(otherwise they are ignored), so the variable want Lr_Con is set to TRUE.
A "v" signifies that all leading'spaces should be discarded before output
is saved for cOmparison, so the variable vacuum is set to TRUE.

. Next, if there are any INPUT -ststementsin the model...(andthus presum-
ably in the student program as well),Aaveinputls setto TRUE.. 'the first
few lines of the model solution die scanned, since-for-each INPUT statement,
there musk,be a REM at the beginning of the model solution describing the'
use of the input variable. The format. of each of those REM statements is:

dine 46:REM <variable name- IS <description>

(For example: 10 REM X IS THE USER'S FIRST ADDEND
20 REM Y IS: THE USER'S SECOND ADDEND)

A linked list of inputVars records is created,-one for each-INPUT variable
expected. Each ilivi2Le record has fopr.fieids: ,"name," for the variable\
name;°"vals," for the value(s) Co be assigned'to the variable during execu-
tion; "description," for the description of the variable; and "link," for
the pointer to the next record. The "name" and "description" fields are
assigned according to the information in the REM statements, and the "vals"
field is assigned by the appropriate value/lists given at the end of the
coding line.

After the initialization, the model solution is executed (invisibly),
and every line of output is stored (in the .arraykrintl) for comparison,
with the following exceptions. Any expression containinga,quoted string
or a numeric constant will not be stored,' unless wantStrCon or wantNumCon,
respectively, is TRUE. If vacuum is TRUE, all leading spaces are deleted
before mine is 'stored The integer variable outl tells the number Of lines
of model output stored.

If theremis-an execution error during the execution of the-model, then
the studentvis told so, and his program is assumed .correct. Otherwise, the
solution checker prepares to execute the student's program and compare its.

27 31

du put_ to that of the model If there are any INN variables (A havelnput
la TRUE), then the procedure kidputs is Called to find out what variable
names the student used. Ki puts' goes through the linked list of inputVars
reCords-and asks the studen "What variable do you use for ...7", where the
I..." is replaced by the "d,scription" field of the record. The variable
name typed in by the stud_ t is checked to make sure that it'is a valid
variable name, that it is the correct type (numeric or string), and
that the student has6ot a ready said he used that variable name_ . if It
is invalid for any reason, the student is told why'and asked to retype the
variable, name. When a val d name is typed, it is compared to the."name"
field o(the record. If they are not the same, then the "name" field is
replaced by the student's variable name.. OnOe again, as before execution
of the'model Solution, the "vals" field is set to the values to be assigned
by INPUT of this variable. 1

After finding 0_ student's input variable names, 'the elements
of a_Boolean array called which is parallel to the array printj,
are Initialized to FALSE. Then the student's program is executed (invisibly)
and given the same "random" numbers and- INPUT values (if any) as.the model
solution. Each line of its output (wih the same vacuum, wantStrCon, and
wantNumCon restrictions as for the model Solution) is stored in the array
printk and compared to the stored output from the model (printi). If the
line' matches the ith element of printl, then EaLvloi] is set to TRUE.
The variable outk tells the number of lines of student output stored. -If,

after the, student's,program has completed execution, any of the elements
in the model-output'array,SEEkiLl) have not been matched (i.e., if matchup[i]

FALSE for any i, i a 1,2X.,,.;outl),. he is told that'the program "does not
seem to solve the problem,"\and:the unmatched elements are listed. Or if
wantExact is TRUE and outk is greater than'outl, the student is told that
the program produced too much output. In eitber case, the procedure verOption
is called to determine whether or not the student wants to continue work on
the task, and, if not, whether or not he Aisagrees with the solution checker.
(If this is the case, this fact and the,student's program are recorded in
the-file ARGUE). In addition to listing the output not found, verOption.-
tells what values-Wereassigned to-NPUT-A and which_types
constants (numeric and/or string), If any, the solution checker ignored.
If, on the other hand, all the model outputs have been matched (and outk
outl if wantExact is TRUE), the student is told that the program "looks

ok," and the 'post-task interview (see Section 7) is presehted.

SECTION 9. 'MSRECS MODULE

There are a number of linked lists .of records built up "and used through-
out a BiP seadion. In particalar;' there is a linked list of records for every
type of'Variable (nuMeric, string, 'one- dimensional numeric array, two-dimen-
sional numeric .array, one-dimensional string-array) used in the student's'
current program. Therelis also a linked list of records,-for the user-defined
functions,,and the solution checker utilizes a list' of the expecteddNPUT
variables.

The first two fields of all these records are the same: "name" for
the variable (or function) name', and "link" for a pointer to the next record
in the linked list. In addition, ',the numeric and string variable records
have a "vale field holding the current value (numeric Or string). of the
yariableithe one-diMensiona1 array variable,records (numeric and string)
have an "upperBound" field for the. upper bound of the array (the lower
bound of all BIP arrays is 1) and'an "array A" field for the 'actual array.
The two-dimensional numeric array records have the same fields as th one-
dimensional ones plus a "secondUpperBnd" field for the upper bound of the
second dimension'of the array. INPUT variable records have -a "vals" field
for the values to be successively aSsigned to the INPUT variable by the
solution checker. Finally; user-function records have an "index" field
for the index into the argz array (see Section 4) of the line in the pro-
gram containing the function definition.

Further examples of the extensive uge of_ linked lists of records
are:

1. The data structure for -the' main tasks (as described in the documen-
,

Canon for ONOFF) is a linkeClist of records, each with 13 fields.

2. The MUST and MAY "sets" of skills used in task-selection (zee
Section 7)-are actually separate linked lists of records, each with two
fields "skindex" for the skill number, and "link" for a pointer to
the next record in the-list.

3. to MAYBE "set" Of possible next tasks to be presented-by the task-
selection algorithm is.a linked lint of records, each with three fields:,
"task" for a pointer to the task (in the linked list of main task records)
"numMustSkills" for the number of skills in the MUST set that the task,
uses, and "link" for a pointer. to the next record.

The MSRECS module contains procedures'useful for handling records and
linked lists of-records. The "is" procedures (lanai, Issa, etc.) check (at
execution time) to see If a given variable is in the appropriate list (
the one for one - dimensional numeric' array variables, or the one for s ng
variables). The "create" procedures (nvCreate, nalCreate, etc.) crea e,a
record. of the desired class and initialize various fields according to the
information passed to the procedures."

I'Ma-be adds a'task to' the MAYBE-"set" described above ReMeveFromMaybe
eliminates inappropriate tasks (those with skills outside the MAY "set. ")
from that list.

29
3

lieqCreate createn a new record to he added to the inked 1. st of
operators or functions required in the solution to the current task.
Each record ham two 'fields, "name" for the name of the operator or
function that is required,. and "link" for a-link to the next record
in the list. ltegltemove removes,a record from the list,
checkA te see if a particular operator is, required in the linked,
list) and listltecutikt2Ti simply steps through the list and types out the
'`name" field of each of the records (see Section 2).

SkCreate creates a new Skill record and initializes its two fields=
"akIndex' for the skill number, and "link " -for a pointer to the next

d in the list. AddtoList adds a new skill record to a linked
'list of (note that they are in numetqc-Order, by skill number),
and empty tells whether or net d :particular skills list is empty.- As
.mentioned abov-, the MUST and MAY "sets" used in task-selectiom are bdth
link6d lists, of skills.

Insert inserts a record at the begidning of a linked list. Inlist
checks to see whether or not:a particular string Is the same as-the "name"
field of any of the records in a .Specific linked list. All of the "is"
procedures'call inList with parameters telling which linked list (the one
for numeric variables, or the one for string variable., etc),to check
and what "name"-,to search-for.

s=,

30

REFERENCES

Barr, A., Beard, N.,-6 Atkinson R. C. The computer
.
tutorial

laborittory: The Stanford BIB', project, 'nternat,onal Journa
Man - Machine Studies, 1976 8 567-596,

Beard, M., Barr, If., Gould Wescourt, K. Curriculum information
networks for com t -assis d instructionction, (NPRDC'Teeh. Rep. 78-18).
San Diego: Navy Persbanel Rcsearth and Develbpment Center, April 1978.

ser 'J. SAIL us r_'s manual
Stanford, _A: Stanford Ar icial Intelligence Labor aryl Stanford
University, 1976.

(Artificial Intelligence Memo 289).

Wilcox, C. R: MAINSAIL language_reference manual. SUMEX Compu
Project, Stanford University Medical Center, 1977. (a)

'Wilcox, C. R. The MAINSAIL project Developing tools for software
portability. Plengal_osiumonCoroceedinsof-ttmutet
Application in Medical Care, IEEE Catalog No. 77CH1270-8C, pp. 76-83,
Washington, D. C., 1977. (b)

REFERENCE NOTES

1. Dageforde; M.,L. The BASIC Inatrnctlonal P
MAINSAIL Languam (NPRDC Tedh. Note 78-11). San Diego: Navy Personnel
Research and Development Center, Apal 1978.

2. Dageforde, M. L.,. & Beard, M. ThevBASIC Instructipnal Pro am: S e
visor's Manual (NPRDC Tech. Nate 78-10). San Diego: Navy Personae
Research and Development Center, April 1978.

Conversion nto

Beard, M. & Barr, A. V. The' ASIC Instructional P am Studen
Manual .(NPRDC Special Rep. 77-2). San Diego: NaVy Personnel Research
and DevelopMent Center, October 1976.

Dageforde, M. L., Beard, H. H., & Barr, A. V. The BASIC instructional
rd ram udentmandal: MAINSAIL conversion (NPRDC Special Rep. 78-9).San Diego: Navy Personnel Research and Development Center, April 1978

APPENDIX

LIST OF TECHNIQUES ANT SKILLS IN TECHNIQUES

LIST OF TECHNIQUES AND SKIM 6 IN TI CIINI(I1R ,

Technique 1. Simple out ut--212.18:

1 Print
2 Print
5 Print

Print

Techni

3

4

6

7'

9

10

11

12

numeric literal
'string literal

numeric expression [operation_ on 11
string expression [concatenation of

ue 2 Variables --assignment.

Print
Print
Print
Print
Print
Print

value of numeric variable
value of string variable

numericexpression [operation on
numeric expression [operation on
string expression [concatenation
string expreasion [concatanation

variables]
literals and variables]
of variables]
of variable and 11 al]

Assign value to a numer,ic.variable [literal value]
`Assign value to a string variable [literal value]

Techni ue More complicated assignment.,

34 Assign to a stringwariable [value of an expression]
35 Assign to a numeric variable [value of an expression]
69 Re-assignment of string . variable (using its own value)
70 Re-assignment of numeric variable (using its own value)
82 Assign to numeric variable the value of another variable
83 Assign to string variable the value of another variable

Technique 4. More out ut.
26 Multiple print [string
29 Multiple print [string
30 Multiple-print [string
74 Multiple print [stri,ng

literal, numeric variable]
literal; numeric variable expression]
literal, string variable]
literal, string variable,expression)

Techn nteractive o ram-s--INPUTfrom user --usin DATA.

a. 13 Assign numeric variable by -INPUT-
14 Assign string variable by -INPUT-
15 Assign numeric variable by -READ- and -DATA-
16 Assign string variable by -READ- and -DATA-
55 The REM statement

uf 6. More .comPlicate

k 17 Multiple
18 Multiple

Multiple
-22 Multiple
23 Multiple
24 Multiple

Multiple
26 Multiple
27 Multiple.

values in -DATA- [all numeric]
values in -DATA- [all string]
values in -DATA- [mixed numeric and string]
assignment by INPUT- [numeric varia les]
assignment by -INPUT, [string variabi
assignment by -INPUT- [mixed numeric an string]
assignment by -READ- [numeric]_
assignment by -READ- [string]
assignment by -READ- [mixed numeric and string]

A-1

L-rotaiTechnicue7.Brainflow.

36 Unconditional branch (-GOTO-)
37 'Interrupt execution

Technique 8. Boolean exprensions.

38 Print Boolean expression [relation of string 1_ als]
39 Print Boolean exprdssion [relation of numeric literals]
40 Print Boolean expression [relation of numeric literal and variable]
41 ,Print Boolean expression' [relatiqn of string literal and variable]
75 Boolean operator -AN
76 Boolean operator -OR-
77 Boolean operator -NOT-

T chni 9. IC eondi
in

42 Conditional branch [compare numeric variable 'with numeric lite
'43 Conditional branch [compare numeric variable with expression]
46 Conditional branch [compare two numeric variables]
47 Conditional branch [compare string variable with string litera
48 Conditional branch [compare two string variables]
5.9 The -STOP- statement

Technique 10. Hand-made loo s - iteration..

44 Conditional branch icompare.counter with 'numeric literal]
45' Conditional branch [compare counter with numeric variable],
49 Initialize counter variable With a literal value
50 Initialize counter variable with the value of a variable
53 Increment the value of a counter variable
54 - increment the value of a counter variable

Techni.ue 11. U loos to accumulate.

51 Accumulate successive values into numeric variable
52 Accumulate suecessive_values into string- variable
71 Calculating complex expressions [num6ric literal and variable]
TB Initialize numeric variable (not counter) to literal value
79 Initialize numeric variable (not counter) to value of a variable
80 Initialize' string variable to literal value
.81 Initialize string variable to the value of another variable

Te ue_12. Using "dummy" value to signify end of data,

20 Dummy value' in -DATA- statement [numeric]
21 Dummy value in -DATA- statement [string]

Technique 13. BASIC functionsle.

56' The -INT- function
57 The -RND- function
58 The -SOR-junction

A-2

61 FOR NEXT 'loops with literal as final value of, index
62 FOR NEXT loops with variable as final value cif index
63 FOR . NEXT loops with positive step size other than I
64 FOR NEXT loops with negative step size

'1221LTJAJIMELL"

31 Assign element-of string array variable by INPUT-
32 Assign element of numeric array variable by -INPUT-
33 Assign element of numeric array variable (value is also a variable
60 The -DIN- statement
65 String array using nunAric variable as index
66 Print value of an element of a string array variable
67 Numeric array using numeric variable as-index
60 Print value of, an element of a numeric array variable

Teehnique 16.. Nearin loops (bne loo L inside another).

72 Nesting loops
73 Subroutines .00-UB- and friends)

f

